ENEREY

 U苂

 วารสารพลังงานสำหรับผู้ประกอบการภาคอุตสาหกรsแ VOLUME 18 ISSUE 71 / JULY-SEPTEMBER 2021

ส̄nธ̄Usะโยชน์

 สำผรับตู้ไ้าร่วบโครงการบเv̄unุuaūuสųu 30\% สูงสุด 300,000 Uาท 02 กิจกรsมอบบรนควาแรู้ ส้านการอบุรักษ์พสังงาน
03
เยี่ยบชుกิจกรsมลีเเด่น ล้าบอบุรักษ์พลังงาน

04 ผู้เชี่ยวชาญเข้าให้คำแบะนำ แลลกี่ปรึกษาในโรงานของท่าน

เซืญสเบ็ดรเข้าร่งแ โครอการสนปัปสบ์ และลลสโไunu อูตสาภกรรพขルกด SME (Energy Points)

สடับสนุนโดย ถำเนินการโดย

 สมเด็จพระนางเจ้าลิริกิ์ พระบรมราชินีนาถ พระบรมราชชนนีพันปีหลวง

1

เย็นกมลชนทั่วแคว้น เย็นร่มทุกสั่ย เย็นขารม่ไน เย็นยิงรำพันพ้น

แดนไทย
สุขล้น
พระมิ่ะแม่นา
พจน์เอือนจำนรรจา
 ทรงเถลิงพรรชนมมาสสาศริ์

เคริมูพระขารมี่นินันดร์เทอญู
ด้วยเกล้าด้วยกระหม่อ่ม ขอเดชร
ข้าพระพุกธเจ้า นายสุพันเุุ์ มงคคสุดิ์ ประถานส่าาอุตสาหกรรมมแห่งประเทค่ไทย

www.iie.fti.or.th

f Fb.me/fie1999fti

뚀
@vfg3606e

\checkmarkกางจัดกำโครงการอบุรักษ์พลังงานในภาคอุตสาหกรsแ กางขักอusuสัแแuาเชิงวิชาการ

การจักเยี่ยบชแบโรงงานถ้านการอนุร้กษ์พลังงาน
กางจั๊ Audit and In-house Training
กาssวusวบข้อบูลเพื่อเป็นศูนย์กลาง ESCO Information Center

\checkmarkกางจัดกิจกรsแพิเศศษถ้าuพลังงาน หล̄กสูตรพลังงานสำหรับผู้บริหาร Executive Energy Program (EEP)

กางเพยแพร่ประชาสั่บพันธ์ข้อแูลข่าวสารถ้านพลังงาน nางเว็บไซติ www.iie.fti.or.th, כารสาs Energy Focus / e-Energy Focus และกางร่วบออกบูธปsะชาสังพันธ์

Contents: ansǔx

06 กิจกรรมพลังงาน

16 EEP STAR
คุณขูวิทย์ จึงธนสมบรูณ์
ประธานเจ้าหน้าที่บริหาร
บริษัท นอร์ทอีส รับเบอร์ จำกัด (มหาขน)

18 EEP 7
Pre-Orientation
หลักสูตรพลังงานสำหรับผู้บริหารรุ่นที่ 7
24 โรงงานติดดาว
บริษัท พลังงานบริสุทธิ์ จำกัด (มหาชน)

26 Energy Update
เชิญชวนเข้าร่วมโครงการ Energy Points

30 บทความพิเศษ

Blockchain Roles in Energy Industry for FTI

34 My Tool
การอนุรักษ์พลังงานในระบบปั๊มความร้อน

38 Energy Sharing

คุ้นรับรางวัลร่วมสนุกแสดงความคิด
เห็นหัวข้ออบมด้านพลังงาน

คณะที่ปรึกษา

นายสุพันธุ์ มงคลสุธี นายสมโภชน์ อาหุนัย นางบุบผา อมรเกียรติขจร นายมงคล เฮงโรจนโสภณ นายพิชัย จิราธิวัฒน์ นายเจริญชัย ประเทืองสุขศรี นายพิชัย ถิ่นสันติสุข นายสมนีก เต็งชาตะพันธ์ นายสมยศ ชาญจึงถาวร ดร.สายศิริ ศิริวิริยะกุล

นายสทธิพล ภมรินทร์ นายสุรินทร์ สิ่ริชยานนท์ นายสุวัฒน์ กมลพนัส นายหิน นววงศ์ นางอัญชลี ชาลีจันทร์ ดร.อำนาจ ยะโสธร นายณรงค์ชัย วิสูตรชัย นายวีระเดช เตชะไพบูลย์ นายสุวิทย์ ธรณินทร์พานิช นายอาทิตย์ เวชกิจ

กองบรรณาธิการ

คุณณัฐวรรณ พานิชพันธ์ คุณลักขณา ธิติธำรงชัย คุณเฉลิม สัมพันธ์ธนรักษ์ คุณเอกพล หาญอธิปเตยยะ คุณเมธี ไชยโย

คุณจุฑามาศ แก้วประเสริฐศรี คุณศิณพา กาญจนระวีกุล คุณกัญญา บำรุงจิตร์ คุณมาริสา แซ่พัว

EDITOR

บรรณาธิการ คุณรุ่งเรือง สายพวรรณ์ ผู้ช่วยบรรณาธิการ คุณศศิวิมล อมแก้ว

ชั้น 7 อาคารปฏิบัติการเทคโนโลยีเชิงสร้างสรรศ์ (มทรก.) เลขที่ 2 ถนนนางลิ้นจี่ แขวงทุ่งมหาเมม เขตสาทร กทม. 10120 E-mail admin@rie.or.th

Executive Editor's Note

เข้าสู่ไตรมาสที่ 3 ของปี 2021 แล้ว เข้าใจว่าตอนนี้พวกเราทุกคนปรับตัวกัน เข้าสู่ชีวิวิถีใหม่ "New Normal" กันเรียบร้อยแล้ว ถึงแม้ว่าบาาสิ่งบางอย่างอาจจะไม่ สะดวกหรือถูกใจนักแต่ชีวิกก็ต้องเดินหน้าต่อไป ขณะที่ปัญหหาการแพร่ระบาดของไวรัส โควิด-19 ก็ยังคงอยู่ แต่ก็เริ่มมีแนวโน้มที่ดีขึ้น เนื่องจากการควบคุมการแพร่ระบาดและ การฉีดวัคซีนมีจำนวนเพิ่มมากขึ้นเรื่อยๆ ส่วนทางภาคอุตสาหกรรมของเราเองก์ให้ความ สำคัญกับการป้องกัน ดูแล รักษาพนักงานกันอย่างเต็มที่ เพื่อให้การประกอบธุรกิจ สามารถเดินหน้าต่อไปได้ หวังไว้ว่าช่วไไตรมาสสุดท้ายของปีนี้ สถานการณ์จะดียิ่งขึ้น เรื่อยๆ จนทำให้เราสามารถที่จะมาร่วมทำกิจกรรมแบบ "Face to Face" ได้มากขึ้นครับ

ส่วนภารกิจหน้าที่ของสถาบันพลังงานๆเอง ก็พยายามเดินหน้าอย่างเต็มที่ เพื่อสร้างกิจกรรมหรือเตรียมโครงการต่างๆที่เป็นประโยชน์แก่สมาชิกๆ อย่างต่อเนื่อง อาทิ โครงการสนับสนุนการอนุรักษ์พลังงานและลดต้นทุนในอุตสาหกรรมขนาด $S M E$ (โครงการ Energy Points) ที่ผมอยากจะเชิญชวนสมาชิกๆ ที่สนใจ "รีบสมัครเข้าร่วม โครงการ" ได้ตั้งแต่วันนี้เลยครับ โดยมีสิทธิประโยชน์ที่ครบถ้วน เช่น การอบรมให้ความรู้ การศึกษาเยี่ยมชมโรงงาน การตรวจวินิจอัยโดยผู้เชี่ยวชาญ และเงินสนับสนุน เป็นต้น นอกจากนี้ ยังมีการสรุปงานใหญู่ประจำปีของสถาบันๆ งานสัมมนาวิชาการ Energy Symposium 2021 (Webinar) หัวข้อ "การปรับตัวของภาคอุตสาหกรรมไทย
 ในยุค Energy Transition for Sustainability" บทความพิ.ศษ "Blockchain Role in Energy Industry" รวมถึงสรุปกิจกรรมพิเศษ Pre-Orientation EEP7 เป็นต้น โดยสามารถติดตามรายละเอียดอื่นๆ เพิ่ม เติมได้ที่ www.iie.fti.or.th สวัสดีแลละพบกันใหม่ ฉบับหน้าครับ

นายรุ่งเรือง สายพวรรณ์ ผู้อำนวยการสถาบันพลังงานเพื่ออุตสาหกรรม

บทความและข้อเขียนที่ทีพิมพพใในวารสาร Energy Focus เป็นความคิดเท็นส่วนตัว และลิขสิทธิ์ของ ผู้เขียน สถาบันพลังานเพื่ออุตสาหกรรม สภาอุตสาหกรรมแห่งประเทศไไย จี่ไมีมีสี่วนรับผิดชอบ หรือผูกพันแต่อย่างใด หากข้อมูลบางส่วนมีการตีพิมพ์คิดพลาด สถาบันา ยินดีแก้ไขใใหในฉบับต่อไป

พลิงคงาแร่งบปีอ เพ๋อพลิิงงานกี่ย่งยี่น

 wบว่าเงื่วร่วแใจก็สาแารกสร้างสังคงกี่ดีย่งที้น และพบว่าถ้าเคียงข้างกันไป ยากแค่ไหนก็โปได้โกลกว่า

(Executive Energy Program) șuñ 7

วันศุกร์ที่ 23 กรกฎาคม 2564 สถาบันพลังงาน เพื่ออุตสาหกรรม ได้มีการจัดประชุมคณะทำงานหลักสูตร พลังงานสำหรับผู้บริหาร ครั้งที่ $5 / 2564$ รูปแบบออนไลน์ผ่าน ระบบ Microsoft Teams โดยได้รับเกียรติจาก นายสมโภชน์ อาหุนัย ประธานสถาบันพลังงานเพื่ออุตสาหกรรม และ ดร.จิราพร ศิริคำ รองผู้ว่าการยุทธศาสตร์ การไฟฟ้าฝ่ายผลิต แห่งประเทศไทย เป็นที่ปรึกษาในที่ประชุม และนางบุบผา อมรเกียรติขจร รองประธานสถาบันพลังงานฯ (ประธาน คณะทำงานหลักสูตรๆ) เป็นประธานในที่ประชุม มีคณะ
 ทำงานเข้าร่วมประชุม จำนวน 18 ท่าน โดยมีวาระการประชุม เรื่องสืบเนื่อง ได้แก่ การยืนยันการเข้าร่วมหลักสูตร EEP7 และการชำระเงิน ค่าสมัครหลักสูตรๆ เรื่องเพื่อพิจารณา ได้แก่ การเลื่อนการจัดกิจกรรมภายใต้หลักสูตรพลังงานสำหรับผู้บริหาร รุ่นที่ 7 (ครั้งที่ 2) เนื่องจาก สถานการณ์การแพร่ระบาดโควิด-19 สถาบันพลังงานฯ ได้ตระหนักถึงสถานการณ์ดังกล่าว โดยให้ความสำคัญกับสุขภาพ ความปลอดภัย การจัดอบรม และกิจกรรมต่างๆ ของหลักสูตรๆ คณะทำงานๆ พิจารณาความเหมาะสมในการจัดกิจกรรม ให้เลื่อนการจัดกิจกรรม ภายใต้หลักสูตรๆ ออกไป จนกว่าสถานการณ์การแพร่ระบาดจะมีแนวโน้มลดลง และภาครัฐมีประกาศผ่อนคลายมาตรการให้สามารถ จัดอบรม และทำกิจกรรมต่างๆ ได้

วันพฤหัสบดีที่ 19 สิงหาคม 2564 สถาบันพลังงานเพื่อ อุตสาหกรรม ได้มีการจัดประชุมคณะทำงานหลักสูตรพลังงานสำหรับผู้ บริหาร ครั้งที่ $6 / 2564$ รูปแบบออนไลน์ผ่านระบบ Microsoft Teams โดยได้รับเกียรติจาก นายสมโภชน์ อาหุนัย ประธานสถาบันพลังงาน เพื่ออุตสาหกรรม เป็นที่ปรึกษาในที่ประชุม และนางบุบผา อมรเกียรติ ขจร รองประธานสถาบันพลังงานฯ (ประธานคณะทำงานหลักสูตร9) เป็น ประธานในที่ประชุม มีคณะทำงานเข้าร่วมประชุม จำนวน 18 ท่าน โดยมี วาระการประชุม เรื่องสืบเนื่อง ความคืบหน้าการชำระค่าสมัครหสักสูตรๆ เรื่องเพื่อพิจารณา การเตรียมการจัดกิจกรรม Pre-Orientation หลักสูตร พลังงานสำหรับผู้บริหาร รุ่นที่ 7 กำหนดจัดกิจกรรมในวันศุกร์ที่ 27 สิงหาคม 2564 โดยกำหนดการจะเริ่ม เวลา 10.00 น. และเสร็จสิ้นกิจกรรมเวลา 11.00 น. โดยภายในกิจกรรมช่วงแรก จะเป็นกล่าวทักทายผู้เข้าร่วมหลักสูตร ชี้แจง วัตถุประสงค์ของหลักสูตรๆ ในเบื้องต้น โดย คุณบุบผา อมรเกียรติขจร ประธานคณะทำงานหลักสูตรพลังงานสำหรับผู้บริหาร จากนั้น ชมประมวล ภาพกิจกรรมหลักสูตรพลังงานสำหรับผู้บริหาร ช่วงที่สอง แนะนำกิจกรรม พิเศษเพิ่มเติม และการแบ่งกลุ่มผู้เข้าร่วมหลักสูตรๆ โดย คุณรุ่งเรือง สายพ วรรณ์ ผู้อำนวยการสถาบันพลังงานเพื่ออุตสาหกรรม และช่วงสุดท้าย เป็นการพูดคุยแลกเปลี่ยนความคิดเห็น เป็นต้น

2. สรุปกาsUsะชฺuคณะกssuการสถาบันพล๋งงานเพื่ออุตสาнกรsu

วันพุธที่ 30 มิถุนายน 2564 เวลา $15.00-$ 17.00 น. สถาบันพลังงานเพื่ออุตสาหกรรม ได้จัดการ ประชุมคณะกรรมการสถาบันพลังานข ครั้ที่ $3 / 2564$ (5) ผ่านระบบ Conference โดยใช้โปรแกรม Microsoft Teams โดยฝ่ายเลขานุการฯ ได้มีการนำ เสนอความคืบหน้าการดำเนินกิจกรรม และโครงการ ต่างๆ ของสถาบันพลังงานๆ รวมถึงความคืบหน้าการ จัดหลักสูตรพลังงานสำหรับผู้บริหาร (EEP) รุ่นที่ 7 และการเตรียมการจัดงานสัมมนาวิชาการประจำปี Energy Symposium 2021 นอกจากนั้น ที่ประชุมยัง ได้มีการพิจารณาถึงการจัดทำข้อเสนอโครงการจัดตั้ง ศูนย์การเรียนรู้ด้านพลังงานหมุนเวียนด้วยเทคโนโลยี VR (Virtual Reality) เพื่อยื่นขอรับการสนับสนุน กองทุนพัฒนาไฟฟ้า เพื่อการส่งเสริมสังคมและ ประชาชนให้มีความรู้ ความตระหนัก และมีส่วนร่วม ทางด้านไฟฟ้า (ตามมาตรา $97(5)$) ประจำปีงบประมาณ พ.ศ. 2564 สำหรับการประชุมในครั้งนี้ มีผู้เข้าร่วมการ ประชุม จำนวนทั้งสิ้น 36 คน

2.2 กางUsะชุบคณะกssuการสถาบับพลังงานเพื่ออุตสาหกรsแ ครั้งที่ 4/2564 (6)

วันพุธที่ 25 สิงหาคม 2564 เวลา $14.00-16.00$ น. สถาบันพลังงานเพื่ออุตสาหกรรม ได้จัดการประชุมคณะกรรมการสถาบัน พลังงานข ครั้งที่ $4 / 2564$ (6) ผ่านระบบ Conference โดยใช้โปรแกรม Zoom Meeting โดยฝ่ายเลขานุการๆ ได้มีการนำเสนอความ คืบหน้าการดำเนินกิจกรรม และโครงการต่างๆ ของสถาบันพลังงานๆ รวมถึงความคืบหน้าการจัดหลักสูตรพลังงานสำหรับผู้บริหาร (EEP) รุ่นที่ 7 และการเตรียมการจัดงานสัมมนาวิชาการประจำปี Energy Symposium 2021 สำหรับการประชุมในครั้งนี้ มีผู้เข้าร่วมการประชุม จำนวนทั้ัสิ้น 43 คน

Usะชุปคณะกำงาบย่อย

1.1 กาsUsะชุบคณะทำงานย่อยแผนอบุรักษัพลังงาu (Energy Efficiency Plan; EEP) ภาคUsะชาชu ครั้งที่ 6/2564 (6)

วันจันทร์ที่ 23 สิงหาคม 2564 ได้มีการประชุมคณะทำงานย่อยแผนอนุรักษ์พลังงาน (Energy Efficiency Plan; EEP) ภาค ประชาชน ครั้งที่ $6 / 2564$ (6) เวลา $09.30-12.00$ น. รูปแบบออนไลน์ระบบ Zoom Cloud Meeting ซึ่งมีผู้ขข้าร่วมประชุมจำนวน 11 ท่าน โดยมีการสรุปผลการประชุมหารือการจัดทำแผน PDP ภาคประชาชน แนวทางการ Run Scenario แผน PDP ภาคประชาชน ครั้งที่ 2 ทั้งนี้ คณะทำงานๆ ได้มีทบทวนข้อมูลและหารือเพิ่มเติมของ (ร่าง) เนื้อหา 6 หัวข้อแผน EEP ภาคประชาชน และพิจารณาการอนุักษ์พลังงาน ภายใต้ภาวะคุกคามของ Covid-19
1.2 กาsUsะชุบคณะทำงาบย่อยแผนอบุรักษัพลังงาน (Energy Efficiency Plan; EEP) ภาคUsะชาชน ครั้งที่ 7/2564 (7)

วันจันทร์ที่ 30 สิงหาคม 2564 ได้มีการประชุมคณะทำงาน ย่อยแผนอนุรักษ์พลังงาน (Energy Efficiency Plan; EEP) ภาค ประชาชน ครั้งที่ $7 / 2564$ (7) เวลา $14.00-16.30$ น. รูปแบบออนไลน์ ระบบ Zoom Cloud Meeting ซึ่งมีผู้เข้าร่วมประชุมจำนวน 10 ท่าน โดยมีการกล่าวถึงที่จะเข้าไปมีส่วนร่วมแสดงความคิดเห็นการจัดทำ แผนพลังงานชาติที่ดำเนินการโดยภาครัฐ และการพิจารณาข้อมูล (ร่าง) เนื้อหาที่มีการให้ข้อเสนอแนะเพิ่มเติมได้แก่งานหัวข้อ Database, Measurement \& Verification (M\&V), Related to Climate Change และ Energy Efficiency Technology Analysis \& Forecasting รวม ถึงกรอบแนวทางการจัดทำ Implementation Plan \& Strategy ของแผน $E E P$ ภาคประชาชน

13 กาsUsะชุแคณะทำงานย่อยแพนอบุรักษ์พลังงาu (Energy Efficiency Plan; EEP) ภาคUsะชาชน ครั้งกี่ 8/2564 (8)

วันศุกร์ที่ 10 กันยายน 2564 ได้มีการประชุมคณะทำงาน ย่อยแผนอนุรักษ์พลังงาน (Energy Efficiency Plan ; EEP) ภาค ประชาชน ครั้งที่ $8 / 2564$ (8) เวลา $13.30-16.30$ น. ในรูปแบบ ออนไลน์ระบบ Zoom Cloud Meeting ซึ่งมีผู้เข้าร่วมประชุมจำนวน 9 ท่าน โดยมีประเด็นหารือการเพิ่มเติมการทำ Data lake สำหรับการ อนุรักษ์พลังงานในหัวข้องาน Database และกลไกที่จะส่งเสริมการทำ $M \& V$ การอนุรักษ์พลังงานให้สอดคล้องกับการทำ Carbon Credit ที่จะนำเสนอเพิ่มในแผน $E E P$ ภาคประชาชน และการเตรียมข้อเสนอ แนะเชิงนโยบายของแผน $E E P$ ภาคประชาชนเพื่อรับฟังความคิดเห็น กับผู้เกี่ยวข้องต่อไป

2.1 UsะชุบMารือตลากแลกเปลี่ยนคาร์Uอนเครกิ๊ก ครั้งกี่ $7 / 2564$

วันศุกร์ที่ 25 มิถุนายน 2564 เวลา $13.30-15.00$ น. คุณเจริญชัย ประเทืองสุขศรี รองประธานกลุ่มอุตสาหกรรมพลังงานหมุนเวียน พร้อมด้วย ผู้บริหาร ส.อ.ท. (คุณสมโภชน์, คุณสุวิทย์, คุณนที, คุณรุ่งเรือง และ คุณพรรรัตน์) ประชุมหารือร่วมกับ คุณเจษฎา ผอ.ศูนย์เทคโนโลยีสารสนเทศ และการสื่อสาร คุณอโณทั่ย สังข์ของ ผอ.สำนักส่งเสริมตลาดคาร์ขอนและ นวัตกรรม องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน) หรือ TGO เพื่อหารือการจัดทำ Platform นำร่อง ในตลาดแลกเปลี่ยนคาร์ขอนเครดิต โดยมีประเด็นที่น่าสนใจ ดังนี้

- ความคืบหน้าการพัฒนา Platform Carbon Trading (คุณสุทธิพงศ์ และ ทีมงาน บริษัท Blockfint)
- ความคืบหน้าการพัฒนาการเชื่อมโยง ระบบ Registry เข้ากับ Platform Carbon Trading
- พิจารณา (ร่าง) กฎในการซื้อขายสิทธิปล่อยก๊าซเรือนกระจกและคาร์บอน เครดิต Rev. 1 อาทิ เช่น ข้อกำหนดของสินค้า คุณสมบัติของสมาชิก (ผู้ซื้อ) วันและเวลาทำการซื้อขาย และ วิธีการซื้อขาย เป็นต้น
- ความคืบหน้าพิธีลงนาม MOU ระหว่าง FTI และ TGO
- เป้าหมายตัว Trading platform demo จะแล้วเสร็จในช่วงปลายเดือน กันยายน และพร้อม Go live ในช่วงเดือนตุลาคม 2564 ต่อไป

2.2 ประชุบหารือตลากแลกเปลี่ยนคาร์บอนเครลิต ครั้งกี่ 8/2564

วันจันทร์ที่ 9 สิงหาคม 2564 เวลา $13.30-15.30$ น. คุณเจริญชัย ประเทืองสุขศรี รองประธานกสุ่มอุตสาหกรรมพลังงานหมุนเวียน พร้อมด้วย ผู้บริหาร ส.อ.ท. (คุณสมโภชน์, คุณสมชาย, คุณสุวิทย์, คุณนที, คุณรุ่งเรีอง และ คุณพรรรัตน์) ประชุมหารือร่วมกับ คุณเจษฎา ผอ.ศูนย์เทคโนโลยีสารสนเทศและ การสื่อสาร คุณอโณทัย สังข์ของ ผอ.สำนักส่งเสริมตลาดคาร์บอนและนวัตกรรม องค์การบริหารจัดการก๊าชเรือนกระจก (องค์การมหาชน) หรือ $T G O$ เพื่อหารือ ความคืบหน้าการพัฒนาแพลตฟอร์ม Thailand Carbon Credit Exchange Platform โดยมีประเด็นที่น่าสนใจ ดังนี้

- ผู้แทนบริษัท Blockfint นำเสนอความคืบหน้าการพัฒนา Thailand Carbon Credit Exchange Platform เพื่อให้คณะทำงานๆ พิจารณาความเหมาะสม ความ โดยมีกระบวนการทดสอบซอฟต์แวร์โดยผู้ใช้งานจริง (UAT.) ช่วงปลาย เดือนกันยายน และ ระบบพร้อมที่ใช้งานจริง (Go Live) ในปลายเดือนตุสาคม
- ผู้แทน $T G O$ ได้นำเสนอความคืบหน้าการเชื่อมโยง ระบบ Registry กับระบบ Thailand Carbon Credit Exchange Platform
- พิจารณา (ร่าง) คำสั่งแต่งตั้งคณะทำงานแพลตฟอร์มสำหรับการซื้อขายหรือ แลกเปลี่ยนคาร์บอนเครดิต (Thailand Carbon Credit Exchange Platform)

- สรุปผลการจัดงานพิธีลงนามบันทึกข้อตกลงความร่วม มือ $M O U$ ระหว่าง $F T$ และ $T G O$ (ในวันที่ 6 กรกฎาคม ที่ผ่านมา)
- กฎระเบียบข้อกฎหมายในส่วนของการซื้อขาย, เรื่อง โดเมนที่จะใช้ในแพลตฟอร์ม, ความปลอดภัยของข้อมูล บนแพลตฟอร์มที่เป็นความลับของผู้ใช้งานระบบ และ ราคากลางในการซื้อขายคาร์บอนเครดิต เมื่อตลาด ซื้อขายเปิดให้ใช้งาน

Us=ชุบคณะกำงานย่อย

2.3 ประชุบหารีอตาลากแลกเปลี่ยนคาธ์บอบเครลิต ครั้งที่ 9/2564

วันพุธที่ 15 กันยายน 2564 เวลา 09.30-11.30 น. คุณเจริญชัย ประเทืองสุขศรี รองประธานคณะทำงานๆ พร้อมด้วยผู้บริหาร ส.อ.ท. (คุณสมโภชน์, คุณสมชาย, คุณสุวิทย์, คุณนที, คุณรุ่งเรือง และ คุณพรรรัตน์) ประชุมหารือร่วมกับ คุณเจษฎา ผอ.ศูนย์เทคโนโลยี สารสนเทศและการสื่อสาร คุณอโณทัย สังข์ทอง ผอ.สำนักส่งเสริมตลาด คาร์บอนและนวัตกรรม องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การ มหาชน) หรือ $T G O$ เพื่อหารือความคืบหน้าการพัฒนาแพลตฟอร์ม Thailand Carbon Credit Exchange Platform โดยมีประเด็นที่น่าสนใจ ดังนี้

- ผู้แทนบริษัท Blockfint นำเสนอความคืบหน้าการพัฒนา Thailand Carbon Credit Exchange Platform เพื่อให้คณะทำงานๆ พิจารณา ความเหมาะสมความ โดยมีกระบวนการทดสอบซอฟต์แวร์โดย ผู้ใช้งานจริง (UAT.) ช่วงเดือนตุลาคม และ ระบบพร้อมที่ใช้งานจริง (Go Live) ในปลายปี 2564
- ผู้แทน $T G O$ ได้นำเสนอความคืบหน้าการเชื่อมโยง ระบบ Registry กับระบบ Thailand Carbon Credit Exchange Platform
- คำสั่งแต่งตั้งคณะทำงานแพลตฟอร์มสำหรับการซื้อขายหรือแลกเปลี่ยนคาร์บอนเครดิต (Thailand Carbon Credit Exchange Platform)
- ประเด็นข้อสรุปการประชุมหารือเพิ่มเติม key man สามฝ่าย FTI. TGO BF ค่าธรรมเนียม (Trading Fee), การเปิดบัญชีเพื่อให้ User ฝากถอนเงินใน Trading Platform, กำหนดผู้ดูแลการเงิน (Admin), Domain ที่ใช้งานในระบบ Trading Platform , การจัดหาผู้ดูแล เรื่องการทำ Pentest ของระบบ Trading Platform และการนัดหมายวันในการ Training Session
- สรุปผลการจัดงานพิธีลงนามในหนังสือแสดงเจตจำนงความร่วมมือในโครงการนำร่อง การซื้อขายไฟฟ้าจากพลังงานหมุนเวียน และ คาร์บอนสีเขียว เพื่อรองรับกลไกการลดก๊าซเรือนกระจก ระหว่าง FTI . และ กลุ่มเด็นโซ่ (ในวันที่ 6 กรกฎาคม ที่ผ่านมา)

วันศุกร์ที่ 3 กันยายน 2564 รองนายกรัฐมนตรีเละรัฐมนตรีว่าการกระทรวงพลังงาน นายสุพัฒน พงษ์พันธ์มีเชาว์ ร่วมหารือแนวทางและกลไกส่งเสริมการพัฒนาตลาด Carbon Credit ที่เหมาะสมสำหรับ ประเทศไทย ร่วมกับ นายสุพันธุ์ มงคลสุธี ประธานสภาอุตสาหกรรมแห่งประเทศไทย พร้อมด้วยผู้บริหาร หน่วยงานอื่นๆ ที่เกี่ยวข้อง อาทิเช่น กรมเศรษฐกิจระหว่างประเทศ กระทรวงการต่างประเทศ , องค์การ บริหารจัดการก๊าซเรือนกระจก และกรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน ๆลฯ

ในการหารือ สภาอุตสาหกรรมแห่งประเทศไทย (ส.อ.ท.) ได้พัฒนาแพลตฟอร์มการซื้อขาย คาร์บอนเครดิตร่วมกับองค์การบริหารก๊าซเรือนกระจก (อบก.) เพื่อเป็นตลาดซื้อขายอย่างเป็นทางการ ทั้งนี้ เมื่อสภาพยุโรปบังคับใช้มาตรการ Carbon Border Adjustment Mechanism (CBAM) จะส่งเสริม ให้การซื้อขายคาร์บอนเครดิตแบบบังคับจะเป็นที่ยอมรับมากกว่าแบบสมัครใจ (T-VER) นอกจากนี้ ส.อ.ท. ยังเตรียมการพัฒนาตลาดสำหรับซื้อขายไฟฟ้าจากพลังงานหมุนเวียน เพื่อรองรับผู้ประกอบการที่ต้องการ ก้าวสู่ Net zero emission

กระทรวงพลังงานและกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อมอยู่ระหว่างจัดทำ Roadmap เพื่อการก้าวสู่การเป็น Net zero emission โดยมีกลไกคาร์บอนเครดิตเป็นเรื่องหนึ่งที่เป็นปัจจัยสนับสนุน พร้อมเสนอกลไกเพิ่มเติม เช่น การปลูกป่าเพื่อเป็น Carbon sink การทำให้พลังงานสะอาดมีราคาถูกลง รวมถึงการจัดทำคาร์บอนฟุตพริ้นท์ของผลิตภัณฑ์ ทั้งนี้ภายใต้กรอบพลังงานแห่งชาติมีการส่งเสริมการ ผลิตไฟฟ้าสะอาดจากแหล่งพลังงานหมุนเวียน เช่น เขื่อน และเซลล์แสงอาทิตย์ โดยต้องปรับระบบสายไฟฟ้าของ 3 การไฟฟ้า ให้ทันสมัย มีระบบกักเก็บ พลังงานรองรับ ซึ่งต้องอาศัยการลงทุนมาก จึงต้องการดึงดูดต่างประเทศให้เข้ามาลงทุน ซึ่งเป็นไบในทิศทางเดียวกับ ส.อ.ท. ที่อยู่ระหว่างดึงบริษัทต่างชาติเข้ามาลงทุนในประเทศ

 สังคนไร้คาร์บอน

วันอังคารที่ 6 กรกฎาคม 2564 เวลา $14.00-14.50$ น. ณ สภาอุตสาหกรรมๆ ห้องประชุม Passion นายวราวุธ ศิลปอาชา รัฐมนตรี ว่าการกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม ประธานสักขีพยาน พร้อมกล่าวแสดงความยินดีในโอกาสที่ นายเกียรติชาย ไมตรีวงษ์ ผู้อำนวยการองค์การบริหารจัดการก๊าซเรือนกระจก และนายสุพันธุ์มงคลสุธี ประธานสภาอุตสาหกรรมแห่งประเทศไทย ได้ว่วมลงนามบันทึก ข้อตกลงความร่วมมีอ "การส่งเสริมและสนับสนุนการดำเนินงานพัมนาตลาดคาร์บอนภายในประเทศ เพื่อขับเคลื่อนการมีส่วนร่วมในการลด ก๊าซเรือนกระจกของภาคเอกชนไทย" ระหว่าง องค์การบริหารจัดการก๊าซเรือนกระจก (องค์การมหาชน) และ สภาอุตสาหกรรมแห่งประเทศ่ไทย พร้อมเปิดตัวเครีอข่ายคาร์บอนนิวทรัลประเทศไทย (Thailand Carbon Neutral Network: TCNN) หัังขับเคลื่อนประเทศสู่สังคมไร้คาร์บอน

โดยมีวัตถุประสงค์การจัดงานเพื่อร่วมกันผลักดันและสนับสนุนการจัดตั้งตลาดคาร์บอนภาคสมัครใจภายในประเทศ (Thailand Carbon Credit Exchange Platform) และ เพื่อสนับสนุนให้ประเทศไทยมีกิจกรรมการลดก๊าซเรือนกระจกเพิ่มขึ้นโดยใช้ต้นทุนอย่างมี ประสิทธิภาพ รวมทั้งผลักดันและสนับสนุนการดำเนินการลดการปล่อยก๊าซเรือนกระจกของภาคอุตสาหกรรมของประเทศไทยให้ไปสู่ Net Zero ตามข้อตกลงและแผนของประเทศไทยและนานาชาติ

วันอังคารที่ 14 กันยายน 2564 นายสุพันธุ์ มงคลสุธี ประธานสภาอุตสาหกรรมแห่งประเทศไทย พร้อมด้วยนายวิเชาวน์ รักพงษ์ไพโรจน์ รองประธาน ส.อ.ท. ,นายสมโภชน์ อาหุนัย รอง ประธาน ส.อ.ท. ,นายมนตรี มหาพฤกษ์พงศ์ เลขาธิการ ส.อ.ท. และ คณะกรรมการ ส.อ.ท. ร่วมให้การต้อนรับเอกอัครราชทูตเดนมาร์ก ประจำประเทศไทย (H.E. Mr.Jon Thorgaard) ณ ห้องมงคลสุธี ชั้น 8 สภาอุตสาหกรรมแห่งประเทศไทย
ในการหารือ ทั้งสองฝ่ายได้เน้นย้ำถึงประเด็นการผลักดันความตกลงการค้าเสรีไทย-สหภาพยุโรป ให้เกิดขึ้น โดยเอกชนไทยและสถาน เอกอัครราชทูตเดนมาร์กได้สนับสนุนให้มีการผลักดันเรื่องดังกล่าวอย่างเป็นรูปธรรม เพื่อเป็นกลไกหนึ่ใในการขยายมูลค่าการค้าการลงทุนระหว่าง กัน สำหรับประเด็นด้านสิ่งแวดล้อม ส.อ.ท. ได้ร่วมจัดทำ Carbon Credit Market ในไทย ซึ่งเป็นการเตรียมการรับมือกับมาตรการด้านสิ่งแวดล้อม ใหม่ๆ ที่กระทบต่อภาคการผลิตของไทยในอนาคต ซึ่งเดนมาร์กก๊ได้ให้ความสนใจในเรื่องนี้ และอาจสร้างความร่วมมีอในอนาคต

สำหรับประเด็นด้านพลังงานทดแทนนั้น ไทยได้ให้ความสำคัญกับแหล่งพลังงานแสงอาทิตย์ และ ด้านการผลิตของอุตสาหกรรมอาหาร ซึ่งปัจจุบันได้มีการนำเทคโนโลยีต่างๆ มาใช้เพื่อปรับรูปแบบการผลิึเป็นแบบ Zero Waste ซึ่สสอดคล้องกับแนวคิดอุตสาหกรรมสีเขียว สุดท้ายนี้ เอกอัครราชทูตเดนมาร์ก มีความประสงค์ในการสร้างความร่วมมือระหว่างเอกชนของทั้งสองประเทศในอุตสาหกรรมศักยภาพและจะร่วมมือกับ ส.อ.ท. ในการผลักดันการค้าการลงทุนระหว่างกันต่อไป

สธุปการจัดกัจกรsง Jusu Online

สถาบันพลังงานเพื่ออุตสาหกรรม สภาอุตสาหกรรมแห่ง ประเทศไทย ได้จัด อบรม Online เรื่อง "เทคนิคการอนุรักษ์พลังงานใน ระบบหม้อไอน้ำ" ในวันศุกร์ที่ 25 มิถุนายน 2564 โดยมีวัตถุประสงค์ เพื่อเป็นการให้ความรู้ ความเข้าใจกับผู้ปฏิบัติการเกี่ยวกับการอนุรักษ์ พลังงานในระบบหม้อไอน้ำ ตลอดจนแนวทางการปรับปรุงประสิทธิภาพ การผลิตและใช้้อน้ำ โดยมีการนำกรณีศึกษาที่ประสบความสำเร็จด้านการ อนุรักษ์พลังงานมาให้ความรู้กับผู้ว่วมอบรม เพื่อเป็นการส่งเสริมการใช้หม้อ ไอน้ำอย่างประสิทธิภาพต่อไป

ซึ่งการอบรมในครั้งนี้ได้รับเกียรติจาก นาวาอากาศเอก (พิเศษ) ชอบ ลายทอง จากภาควิชาวัสดุศาสตร์ โรงเรียนนายเรืออากาศ ซึ่งเป็นผู้ที่ มีความชำนาญแและเชี่ยวชาญเกี่ยวกับหัวข้อเรื่องดังกล่าว มาเป็นวิทยากร บรรยาย โดยกิจกรรมดังกล่าว จัดขึ้นในรูปแบบ Online ผ่านระบบ Zoom Cloud Meeting Application ซึ่งการจัดอบรมในครั้งนี้ มีผู้สนใจ เข้าร่วมทั้งสมาชิก ส.อ.ท. และบุคคลทั่วไป จำนวนทั้งหมด 79 ท่าน

สาแารถติดตาแกิจกรรงอี่นฯ กี่น่าสนใจไส๋ก่

 tauit 2 लum
CO 0234512474150023451186
\square activityiieegmeill com
© . wwwifieftiorth

 สะกวก ทับสบั่ง แน่บยำ

y mea_news
(0) mea fanclub
(e) MEA Connect

You Tuthe MEA Mutemedia

สสุUnารธัดทีจกรsu busu Online

ト้อข้อ"เกคนิคการลกค่าไWฟ้าของระแบอักอากาศ"

สถาบันพลังงานเพื่ออุตสาหกรรม สภาอุตสาหกรรมแห่ง ประเทศไทยได้จัด อบรม Online เรื่อง "เทคนิคการลดค่าไฟฟ้าของระบบ อัดอากาศ" ในวันพฤหัสบดีที่ 22 กรกฎาคม 2564 โดยมีวัตถุประสงค์ เพื่อให้ผู้ปฏิบิติงานในภาคอุตสาหกรรมได้รับความรู้ ความเข้าใจถึงเทคนิค ต่างๆในเรื่องของการตรวจวัดและวิเคราะห์ประสิทธิภาพของระบบอากาศ อัดที่ใช้เครื่องอัดอากาศชนิดสกรู (Screw type air compressors) โดย สามารถนำไปประยุกต์ใช้งานได้จริงในโรงงาน เพื่อหาแนวทางการใช้งาน และการลดภาระค่าไฟฟ้าได้อย่างมีประสิทธิภาพ ซึ่งการอบรมในครั้งนี้ได้ รับเกียรติจาก อาจารย์ไชยะ แช่มช้อย อดีตอาจารย์คณะวิศวกรรมศาสตร์ จากจุฬาลงกรณ์มหาวิทยาลัย

โดยเป็นที่ปรึกษาและผู้เชี่ยวชาญูในการดำเนินการตรวจวัดและ วิเคราะห์ประสิทธิภาพพลังงานของระบบอากาศอัด ตลอดจนเป็น ผู้เชี่ยวชาญด้านการอนุรักษ์พลังงานประจำ $A C$ จุฬาๆ มาเป็นวิทยากร บรรยายในหัวข้อเรื่องดังกล่าว โดยกิจกรรมดังกล่าว จัดขึ้นในรูปแบบ Online ผ่านระบบ Zoom Cloud Meeting Application ซึ่งการจัดอบรม ในครั้งนี้ ีีผู้สนใจเข้าร่วมทั้งสมาชิก ส.อ.ท. และบุคคลทั่วไป จำนวนทั้งหมด 23 ท่าน

สาแารถติดตาแกิจกรsงอี่นฯ กี่น่าสนไจได้ก่่

C 0234512471450023451186
\square activityiieegmailcom
© wwwieftiorth

จากบรัตกรsuIบ็ดพลาสติกพ̄พื TดยคuInย สุ่ำกาะป้องกับโควิด-19 ติอใจสำคัญบขงหน้ากากอบาบีย Ku้ากาก N95 ชุด PPE และชุดกางu์ Iพี่วคuInย
 ผ้า IUลต์Tuau

แผ่uกรองอากาศ
C. ชั้นกรอง粦 3 หน้ากาก N95 หน้ากากอนามัย

- ปีเส้นไยvuาดเล็กระดับไบโคsเบตร สานารกกรองเช้อโรค อบุภาคvuาดเล็ก ฝุ่น PM2.5
- Iบาบาง สวบโส่สบาย $s=\cup า ย อ า ก า ศ โ ด ้ ด ี ~$
- ได้บาตรฐานสากล โบ่อีสางที่กำอันตรายต่อธ่างกาย ผ่านการตรวจสอบจากห้องเाล็นกี่ได้บาตรฐาน

Usะวัตักาsทำงานและขอบเขตงานกี่รับผิดชอบ
อดีตเด็กกวาดลานมันสำปะหลัง ที่เห็นโอกาสของธุรกิจ เลี้ยงไก่ ที่พบว่ามูลไก่เป็นปุ๋ยชั้นดีในการปลูกยางพารา จึงเริ่มปลูก ยางพาราในเขตภาคตะวันออกเฉียงเหนือ และก่อตั้งโรงงานผู้ผลิต และจำหน่ายยางพาราธรรมชาติแปรรูป และจากปริมาณน้ำที่ใช้ใน กระบวนการผลิตที่ส่งเข้าระบบบำบัดน้ำเสียของโรงงานมีสัดส่วน เพิ่มขึ้น ตามอัตรากำลังการผลิตที่ขยายเพิ่มขึ้น ประกอบกับการ สนับสนุนและส่งเสริมจากภาครัฐุในเรื่องของการจัดการพลังงาน การ รักษาสิ่งแวดล้อม ลดภาระเกี่ยวกับพลังงานและการเพิ่มมูลค่าของ เสียที่เกิดขึ้นจากกระบวนการผลิต เป็นแรงผลักดันให้ได้ศึกษาและ ก่อตั้งโครงการผลิตก๊าซชีวภาพ และติดตั้งโซล่าร์เซลล์บนอาคาร และ เริ่มโครงการการสร้างมูลค่าเพิ่มให้กับผลิตภัณฑ์ยางพาราโดยร่วมกับ มหาวิทยาลัยสงขลานครินทร์ในการพัฒนาและวิจัยทำแผ่นรองนอน ปศุสัตว์ ซึ่งเป็นการต่อยอดและเป็นโอกาสที่มองเห็น โดยมุ่งหวังที่ จะเป็นโรงงานที่ดำเนินธุรกิจอย่างเป็นมิตรกับสังคม ชุมชน และ สิ่งแวดล้อม

บายชูว̄กย์ จึงธนสแบูรณ์

Uระธานเจ้าหน้ากี่บริหาร

แuวทางและнลักการในการบริหารงาน

"สิ่งสำคัญที่สุดคือ การพัฒนาและบริหารบุคคลากรที่มีการ บริหารที่ดีนั้นต้องอาศัยทั้งศาสตร์และศิลป์ ในการดำเนินงาน ได้มีการ แจ้งถึงนโยบายขององค์กรใให้ชัดเจนและการวางแผนการทำงานร่วมกัน จากนั้นลงมือทำโดยทันที โดยในองค์กรจะมีการพัฒนาคักยภาพของ พนักงานเพื่อให้พนักงานที่มีการปฏิบัติงานที่ทุ่มเทและมีผลงาน โดดเด่น ได้รับการโปรโมทขึ้นมาจากพนักงาน เป็นระดับหัวหน้าแผนก ไปยัง ระดับหัวหน้าฝ่าย นอกจากนี้ยังมีการส่งเสริมการจ้างงานใน ชุมชนรอบๆโรงงานโดยใช้คนในพื้นที่เนื่องจากเราเล็งเห็นว่าบางคน ทำงานอยู่ที่กรุงเทพแล้ว อยากกลับมาทำงานที่บ้านเกิด เพื่อได้ มาอยู่กับครอบครัว ทำให้มีคุณภาพชีวิตที่ดีขึ้น ประกอบกับการจ้าง เหมาพนักงานเป็นกลุ่มๆ ให้พนักงานดูแลรับผิดชอบกันเอง โดยมี หัวหน้ากลุ่มดูแลประสิทธิภาพการผลิตของแต่ละกลุ่ม ทำมาก ได้มาก ทำน้อยได้น้อย ประสิทธิภาพในการผลิตของโรงงานจึงสูง" คุณชูวิทย์ยังฝากไว้อีกว่า "สิ่งสำคัญเราต้องเรียนรู้ประวัติศาสตร์ อะไร ดีไม่ดีต้องศึกษา ผมทำธุรกิจโรงงานยาง แม้จะเจอปัญหาแต่ก็สามารถ ผ่านมาได้ เพราะผมเรียนรู้และลงมือทำจริง ผมปลูกยางเอง เดินไร่เอง ทำทุกอย่างวิ่งขายยางเอง เรียนรู้ในทุกมิติ ซึ่งทุกอย่างเป็น ประสบการณ์ที่ก่อให้เกิดมาเป็น $N E R$ ใน ทุกวันนี้"

แุงยอง/วัสัยกัศศน์ ถ้านพลังงาน

ตามที่รัฐบาสโดยกระทรวงพลังงานมีการพัฒนาและพลักดัน การใช้พลังงานทดแทน ที่เป็นพลังงานสะอาด เพื่อสร้างความยั่งยืนและ เป็นมิตรต่อสิ่งแวดล้อม นับว่าเป็นสิ่งสำคัญที่ปัจจุบันมีนวัตกรรมและ เทคโนโลยีต่างๆในการนำมาประยุกต์ใช้ เพื่อดำเนินการในการช่วยกัน แก้ปัญหาโลกร้อน ประกอบกับปั จจุบันด้วยการแพร่ระบาดของเชื้อ โควิด-19 ได้ทำให้การปล่อยก๊าซเรือนกระจกลดลงอย่างมาก เนื่องจาก มีนโยบายจากหลายบริษัทที่สนับสนุนให้พนักงานทำงานจากที่บ้าน รวม ถึงการประชุมทางไกลผ่านการประชุมออนไลน์แทนการเดินทางไป ประชุม ตรงนี้มีส่วนช่วยในการลดกำซคาร์บอนไดออกไซด์จากการเผา ไหม้เครื่องยนต์โดยจะเห็นได้ว่าประเทศต่างๆทั่วโลก กำลังเติบโตและ แข่งขันกันเป็นผู้ำด้านพลังงาน ที่เห็นได้ชัดคือเริ่มมีการผลิตและใช้ รถยนต์พลังงานไฟฟ้า หรือ รถยนต์ EV มากขึ้น โดยจากการสนับสนุน ของรัฐบาล

สำหรับในประเทศไทย รัฐบาสได้มีการส่งเสริมและให้ความสำคัญ กับการใช้พลังงานทดแทนอย่างมากโดยได้มีการจัดทำแผนพลังงาน แห่งชาติ ซึ่งได้กำหนดแนวนโยบายภาคพลังงาน โดยมีเป้าหมาย สนับสนุนให้ประเทศไทยสามารถมุ่งสู่พลังงานสะอาด และลดการ ปลดปล่อยก๊าซคาร์บอนไดออกไซด์สุทธิเป็นศูนย์ (Carbon Neutrality) ภายในปี ค.ศ. 2065-2070 ถือได้ว่า เป็นโครงการที่ดี ที่สามารถช่วยพัฒนาประเทศในด้านพลังงาน โดยมาปรับใช้กับ ทิศทางการพัฒนาด้านพลังงานของโลกในอนาคตได้ทั้งนี้ต้องได้รับ การสนับสนุนจากภาครัฐด้วย

UsะสUกางณั/ควาుUs:ทับใจciอนลักสูcง พลังงาแสำหรับผู้บรีнาง (EEP)

จากที่ได้เข้าอบรมหลักสูตรนี้ นอกจากวิทยากร ผู้เชี่ยวชาญ ที่นำความรู้มาถ่ายทอด นำประสบการณ์การต่างๆมา แชร์ข้อมูลที่เป็นประโยชน์ ยังมีผู้บริหารจากหลากหลายธุรกิจ ที่ได้รับ การคัดเลือกเข้ามา ที่มาแชร์ประสบการณ์และมุมมองต่างๆ ซึ่งทำให้เห็นว่าอนาคตของโลก กับการจัดการด้านพลังงาน จะเปลี่ยนไปในแนวทางไหน ซึ่งการเข้ามาอบรมหลักสูตรนี้ได้รับ ความรู้ ความเข้าใจด้านพลังงานมากขึ้น สามารถนำความรู้ที่ได้ ไปปรับใช้ในการทำงานได้เป็นอย่างดี อีกทั้งยังได้รับคำแนะนำ จากวิทยากรและเพื่อนๆร่วมรุ่นได้เป็นอย่างดี ที่หาจากที่ไหนไม่ได้

Us:โยชนีกี่ไล้รับจากกางเป็บเครือข่ายถ้าน พลังงาuหรือจากเพื่อนร่วบหลักสูตรพลั้งงานบ

หลักสูตรพสังงานสำหรับผู้บริหาร (EEP) เป็นหลักสูตรที่ ได้เจอกับทางผู้บริหารจาก หลากหลายธุรกิจ ถือได้ว่าเป็นการรวม ของผู้บริหารระดับสูงของแต่ละบริษัทในด้านพลังงานที่หลากหลาย โดยในหลักสูตรนี้นด้มีการแลกเปลี่ยนประสบการณ์ และความคิด เห็นร่วมกัน รวมทั้งได้รับความรู้ใหม่ๆ และรายละเอียดที่สามารถ นำมาพัฒนาต่อยอดประยุกต์ใช้ได้จริง ซึ่งได้รับความช่วยเหลืออย่างดี หากเราไปหาข้อมูลเองก็คงต้องใช้เวลานานในการค้นหาข้อมูล นอกจากนี้ยังได้รับมุมมองใหม่ๆ และการให้คำปรึกษาจากผู้บริหาร ท่านอื่นๆในกลุ่ม รวมทั้ง เมื่ออบรมจบหลักสูตรแส้วยังมีช่องทางการ ติตต่อสื่อสารผ่านกลุ่มไลน์ (Line) เพื่อแลกเปลี่ยนความรู้ และช่อง ทางในการติดต่อกันได้

สุดท้าย ท่านฝากถึงสู้ที่สนใจ อยากให้อองดูเนื้อหาของ หลักสูตรที่เธ็นประโยขน์ของสู้ที่ประกอบรุริจ ด้านพลังงาน และ เหล่าวิทยากรูู้มีปประสบการณ์ตรง ที่จะมาถ่ายทขดความมู้และ เทคนิคต่างๆ ในหลักสูตรนี้ นอกจากนี้ได้มีการรู้จักเพื่อนร่วมรุ่น ในการสร้างเครือข่ายด้านพลังงาน การแลกเปลี่ยน ส่งเสริม และสนับสนุน ช่วยเหลือกันและกันหลังจากที่จบหลักุูตรแล้ว เพื่อนำความรู้ที่ได้รับมาประยุกต์ใข้กับธุรกิจได้อย่างมี ประสิทธิภาพ เพื่อร่วมกันเป็นส่วนหนึ่งในการพัฒนาการใช้ พลังงานทางเลือก

EEP 7

нลักสูตรพลังงานสำแรับผู้บริหาร (Executive Energy Program) Us=จำび 2021 ș่un̆ 7

สถาบันพลังงานเพื่ออุตสาหกรรม ได้จัดกิจกรรมพิเศษ Pre-Orientation หลักสูตรพลังงานสำหรับผู้บริหาร (Executive Energy Program) รุ่นที่ 7 ขื้น เมื่อวันศุกร์ที่ 27 สิงหาคม 2564 เวลา 10.00-11.00 น รูปแบบออนไลน์ผ่านระบบ Zoom Cloud Meeting

ในการจัดกิจกรรมครั้งนี้มีจุดประสงค์เพื่อเป็นการแนะนำ ทำความรู้จักกัน การให้ความรู้หรือการพูดคุยแลกเปลี่ยนข้อมูลและ ความคิดเห็นในด้านต่างๆ แก่ผู้เข้าร่วมหลักสูตรๆ ในรุ่นที่ 7

กิจกรรมช่วงแรก เป็นการกล่าวทักทายผู้เข้าร่วมหลักสูตรและซี้แจงวัตถุประสงค์ของหลักสูตรๆ ในเบื้องต้นโดย นางบุบผา อมรเกียรติขจร ประธานคณะทำงานหลักสูตรพลังงานสำหรับผู้บริหาร พร้อมรับขม VDO ประมวลภาพกิจกรรมหลักสูตรพลังงานสำหรับผู้บริหาร

ช่วงที่สอง เป็นการแนะนำกิจกรรมพิเศษเพิ่มเติม และการแบ่งกลุ่มผู้เข้าร่วมหลักสูตรๆ โดย นายรุ่งเรือง สายพวรรณ์ ผู้อำนวยการสถาบันพลังงานเพื่ออุตสาหกรรม

ช่วงสุดท้าย เป็นการพูดคุยแลกเปลี่ยนความคิดเห็น โดยมีผู้เข้าร่วมกิจกรรมทั้งหมด จำนวน 83 ท่าน

ผู้สนับสนุน

(3) กระทรวงพลังงาน

MINISTRY OF ENERGY

Energy Update

 "การปรับcิวของภาคอุณาสาผกรsนไnยในยุค Energy Transition to Sustainability (How to drive... How to make it happen)"
วัuพฤК̌สuลีกี่ 9 กัแยายน 2564 เวลา 13.30-17.00 u. sูปแuบ Webinar Online ผ่าน Zoom Webinar และ Facebook Live

สถานการณ์การแพร่ระบาดของเชื้อไวรัสของโควิด-19 เป็นตัวเร่งวิถีใหม่ new normal ทุกด้าน ไม่เว้นแม้แต่พลังงาน การเปลี่ยนแปลงยุค Digital Disruption ทั้งในด้านสภาวะโลกร้อนและพลังงานสะอาด จากการแข่งขันเดิม ๆ เริ่มเข้าสู่ยุค Smart \& Green Energy การปรับตัวของภาคอุตสาหกรรมไทยในยุค Energy Transition จึงมีความจำเป็นอย่างยิ่งที่ต้องปรับตัวให้ทันต่อเหตุการณ์วิกฤตการณ์ ต่าง ๆ ที่อาจเกิดขึ้นโดยไม่ทันคาดคิด

งานสัมมนาเริ่มจากกล่าวต้อนรับ โดย คุณสุพันธุ์ มงคลสุธี ประธานสภา อุตสาหกรรมแห่งประเทศไทย ซึ่งสถาบันพลังงานเพื่ออุตสาหกรรม สภาอุตสาหกรรม แห่งประเทศไทย เป็นเจ้าภาพหลักร่วมกับหน่วยงานภาครัฐและเอกชน จัดสัมมนา วิชาการประจำปี Energy Symposium ครั้งที่ 16 ในรูปแบบพิเศษ ผู้เข้าร่วมสัมมนาฯ รับชมผ่าน จำนวน 762 คน งานสัมมนาแบ่งออกเป็น 3 ช่วง ดำเนินรายการ โดย คุณรวิวัฒน์ พนาสันติภาพ คณะทำงานการจัดงาน

งานสัมมนาได้รับเกียรติจากคุณสุพัฒนพงษ์ พันธ์มีเซาว์ รองนายก รัฐมนตรี และรัฐมนตรีว่าการกระทรวงพลังงาน กล่าวเรื่อง "การปรับตัวของภาค อุตสาหกรรมไทยในยุค Energy Transition to Sustainability" โดยได้กล่าวถึง สถานการณ์ที่หลายประเทศทั่วโลกกำลังให้ความสำคัญกับเป้าหมายการปลดปล่อย ก๊าซเรีอนกระจกสุทธิเป็นศูนย์ Net Zero Emission ภายในปี ค.ศ. 2065-2070 หากต้องทำให้ 0% ต้องใช้งบประมาณจำนวนมากในการซื้อคาร์บอนเครดิต ซึ่งภาวะ โลกร้อนนั้นจะกลายเป็นภาระในอนาคต ดังนั้น รัฐบาลจึงเตรียมประกาศเป้าหมาย การใช้ยานยนต์ไฟฟ้า ส่งเสริมให้พลังงานหมุนเวียนมีบทบาทเพิ่มมากขึ้น รวมถึง กำหนดนโยบายด้านการส่งเสริมอุตสาหกรรมที่เกี่ยวข้อง สำหรับด้านเศรษฐกิจ รัฐบาลพยายามเตรียมความพร้อมที่จะรับการลงทุนจากต่างประเทศ ที่จะช่วย สนับสนุนการเติบโตของเศรษฐกิจและการพัฒนานวัตกรรม รวมทั้งพัฒนาเศรษฐกิจ ให้สอดคล้องกับการเปลี่ยนแปลงของโลกคีอเรื่องของการลงทุนที่เกี่ยวข้องกับการ ลดการปล่อยคาร์บอนไดร์ออกไซด์ สังคมคาร์บอนต่ำ

การอภิปรายช่วงที่ 1 หัวข้อ "Energy Transition to Sustainability" ผู้เข้าร่วมอภิปรายคือ คุณวัฒนพงษ์ คุโรวาท ผู้อำนวยการสำนักงานนโยบายและแผน พลังงาน, ดร.ประเสริฐ สินสุขประเสริฐ อธิบดีกรมพัฒนา พลังงานทดแทนและอนุรักษ์พลังงาน, คุณภานุวัฒน์ ตริยางกูรศรี รองปลัดกระทรวงอุตสาหกรรม กระทรวง อุตสาหกรรม และดร.รวีวรรณ ภูริเดช เลขาธิการ สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและ สิ่งแวดล้อม การอภิปรายช่วงที่ 1 มีสาระสำคัญ ในการ ปรับโครงสร้างกิจการพลังงานรองรับแนวโน้มการเปลี่ยน ผ่านพลังงาน (Energy Transition) ตามแนวทาง 4D1E เพิ่มสัดส่วนการผลิตไฟฟ้าใหม่โดยมีสัดส่วนพลังงาน หมุนเวียนไม่น้อยกว่าร้อยละ 50 พิจารณาร่วมกับต้นทุน ระบบกักเก็บพลังงานระยะยาว ปรับเปลี่ยนการใช้ พลังงานภาคขนส่งเป็นพลังงานไฟฟ้าสีเขียวด้วย เทคโนโลยียานยนต์ไฟฟ้า (Electric Vehicle: EV) ตาม นโยบาย $30 @ 30$ และปรับเพิ่มประสิทธิภาพการใช้ พลังงาน มากกว่าร้อยละ 30 โดยการนำเทคโนโลยีและ นวัตกรรมการบริหารจัดการพลังงานสมัยใหม่ มาเพิ่ม ประสิทธิภาพในการบริหารจัดการพลังงาน

ด้านกระทรวงอุตสาหกรรม สนับสนุนแผนการ พัฒนาอุตสาหกรรมยานยนต์ไฟฟ้า ในการช่วยลดการ ปลดปล่อยมลพิษ แก้ไขปัญหาฝุ่น $P M 2.5$ รวมทั้งส่งเสริม การวิจัยและพัฒนา จัดทำมาตรฐาน การพัฒนาขีดความ สามารถบุคลากร เน้นการใช้เทคโนโลยี ดิจิตัล เพื่อให้ภาค อุตสาหกรรมไทยเติบโตและพัฒนาอย่างยั่งยืน ส่วน สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและ สิ่งแวดล้อม ได้กล่าวถึงการกำหนดนโยบายที่มุ่งสู่ Net Zero Emission ความสำคัญของข้อตกลงปารีส ที่มุ่งหวัง

จะควบคุมการเพิ่มขึ้นของอุณหภูมิเฉลี่ยของโลกให้ต่ำกว่า 2 องศาเซลเซียส และพยายามไม่ให้เกิน 1.5 องศาเซลเซียส สำหรับประเทศไทยต้องปรับ เปลี่ยนโครงสร้างขั้นพื้นฐานและโครงสร้างระบบพลังงานอย่างฉับพลัน รวมทั้งต้องให้ความสำคัญูในด้านการวิจัยและพัฒนา

การอภิปรายช่วงที่ 2 หัวข้อ "การปรับตัวของ Energy Supply Side เพื่อความยั่งยืน" ผู้เข้าร่วมอภิปราย คือ คุณสาธิต ครองสัตย์ ผู้ช่วยผู้ ว่าการยุทธศาสตร์องค์การ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย คุณพงศกร ยุทธโกวิท ผู้ช่วยผู้ว่าการวางแผนและพัฒนาระบบไฟฟ้า การไฟฟ้าส่วน ภูมิภาค คุณวีรวัจน์ บัวทอง รองผู้ว่าการแผนและพัฒนาองค์กร การไฟฟ้า นครหลวง คุณเชิดชัย บุญชูช่วย ผู้ช่วยกรรมการผู้จัดการใหญ่แผนกลยุทธ์และ บริหารการลงทุน บริษัท ปตท. จำกัด (มหาชน)

สำหรับการปรับตัวของ Energy Supply Side เพื่อความยั่งยืน นั้น มีการปรับเปลี่ยนรูปแบบเทคโนโลยีด้านการผลิตไฟฟ้าจากรูปแบบเดิม ที่เป็นโครงสร้างพื้นฐานขนาดใหญ่ที่พึ่งพาการผลิตไฟฟ้าจากฟอสซิลเป็น หลัก ไปสู่ระบบไฟฟ้าสมัยใหม่ ที่เป็นมิตรต่อสิ่งแวดล้อมมากขึ้น การไฟฟ้า ทั้งสามผนึกกำลังจำหน่ายพลังงานสะอาด เตรียมพร้อมรับมีอเทรนด์ EV ใน อนาคต ที่จะช่วยประหยัดได้มากกว่ารถที่ใช้น้ำมัน โดย กฟผ. จัดทำระบบ EV Ecosystem ที่ให้บริการครบวงจร เชื่อมโยงภาคขนส่งทั้งระบบ PEA ปรับปรุงระบบรองรับสถานีชาร์จ $E V$ ทั่วประเทศ ส่วน $M E A$ ตั้เเป้าหมายจะ ต้องจัดหาระบบไฟฟ้าให้เพียงพอต่อการใช้งานของรถ EV ภายใน 10 ปีข้าง หน้า รวมทั้งต้องมีการปรับปรุงระบบสมาร์ทกริด และระบบสายส่งไฟฟ้าต่างๆ ให้สามารถรองรับกำลังผลิตไฟฟ้าจากโซลาร์ขของภาคเอกชนที่จะเข้าสู่ระบบ ในอนาคต รวมถึงจะต้องจัดทำระบบกักเก็บพลังงาน (Energy Storage System) และการพัฒนาแพลตฟอร์ม (Energy Trading Platform) เพื่อให้เกิดความเสถียรในการใช้งานของระบบไฟฟ้า ส่วน ปตท. นั้นมีกำหนด ให้กลุ่ม ปตท. มีสัดส่วนการลงทุนในพลังงานหมุนเวียนให้ถึง 8,000 เมกะวัตต์ ในปี 2573 โดยมีการศึกษาธุรกิจให้บริการระบบผลิตไฟฟ้าจาก พลังงานแสงอาทิตย์สำหรับโรงงานอุตสาหกรรม

ถำเนินการโกย

(d)) กระทรวงพลังงาน

การอภิปรายช่วงที่ 3 หัวข้อ "การปรับตัวของ ผู้ประกอบการเพื่อความยั่งยืน นั้น ทางคุณอมร ทรัพย์ทวีกุล กรรมการและรองประธานเจ้าหน้าที่บริหาร บริษัท พลังงาน บริสุทธิ์ จำกัด (มหาชน) ได้กล่าวถึงการปรับตัวโดยได้นำ นวัตกรรมและเทคโนโลย์ใหม่ๆ มาใช้เพื่อสร้างการเติบโต ภาย ใต้แนวนโยบายที่มุ่งเน้นการใช้เทคโนโลยีที่ทันสมัยมาเป็นตัวนำ ได้แก่ การขยายธุรกิจไปยังอุตสาหกรรมกักเก็บพลังงานด้วย แบตเตอรี่ลิเที่ยมไอออน ลงทุนในอุตสาหกรรมยานยนต์ไฟฟ้า ทุกชนิด และขยายจุดให้บริการอัดประจุไฟฟ้า คุณอรรถพงศ์ สถิตมโนธรรม Chief Executive Officer, SCG Cleanergy บริษัท ปูนซิเมนต์ไทย จำกัด ได้กล่าวถึง SCG Clean energy ที่มีกลไกสนับสนุนการใช้ราคาคาร์บอนภายในองค์กร (Internal Carbon Pricing : ICP) เพิ่มสัดส่วนการใช้เชื้อเพลิงทดแทน เพิ่มประสิทธิภาพการใช้พสังงาน Alternative fuels เช่น ยางรถยนต์, RDF, biomass และด้าน Waste Heat Recovery คุณวัสสชัย สิทธิบุศย์ ที่ปรึกษาฝ่ายส่งเสริมความปลอดภัยและ สิ่งแวดล้อม บริษัท โตโยต้า มอเตอร์ (ประเทศไทย) จำกัด ได้ กล่าวถึงการปรับตัวปรับธุรกิจภายใต้มาตรการใหม่ "New Vehicle Zero CO2 Challenge" โดยตั้งเป้าลดการ ปล่อยก๊าขคาร์บอนไดออกไซด์ให้ได้สูงกว่าสถิติในปี 2010 ใน ฐานะผู้นลิตยานยนต์พร้อมกับพันธมิตรทางธุรกิจขอร่วมเป็นส่วน หนึ่งในการมุ่งสร้างสังคมที่เป็นมิตรต่อสิ่งแวดล้อม ผ่านการ พัฒนาอีโคซิสเต็มของยานยนต์ไปสู่รถยนต์ที่ขับเคลื่อนด้วย พลังงานไฟฟ้าและเซลล์เชื้อเพลิง

สุดท้ายนี้ สถาบันพลังงานฯ หวังว่างานสัมมนาครั้งนี้ จะเป็นจุดเริ่มต้นร่วมผลักดันการอนุรักษ์พลังงานและพลังงาน ทดแทน เพื่อให้การปรับตัวของภาคอุตสาหกรรมไทย เป็นพลัง ในการขับเคลื่อนนำพาประเทศไทยไปสู่ Low-Carbon Society บรรลุตามวาระแห่งชาติที่วางไว้ หากท่านใดสนใจเอกสาร ประกอบการสัมมนาในงานดังกล่าวสามารถ Download ได้ที่ https://iie.fti.or.th

ขอขอบคุญผู้aัับสบุบ

K RATCH GROUP

ราช กรุ๊U
 มุ่งแี่นสร้างสรงค์คุณภาพชีว๋ตกี่ดีทองกุกคน

www.ratch.co.th

us̄ษ̄n sาช กรุ๊ป จำกัด (บหาชน)

 และสั่งแวดล้อบไห้คงอยู่อย่างยั่งยีน

เรือโดยสารพลังงานไฟฟ้า "MINE SMART FERRY" เป็นเรือ โดยสารพลังงานไฟฟ้าลำแรกของประเทศไทยที่เกิดจากฝีมีอคนไทย 100% มีจุดเด่นอยู่ที่การลดมลภาวะทางอากาศและเสียง เป็นมิตรต่อ สิ่งแวดล้อม ที่คว้ารางวัลนวัตกรรมแห่งชาติ ประจำปี 2563 สำหรับ โครงการนี้จะมีเรือทั้งหมด 27 ลำ แบ่งเป็นเรือโดยสาร 23 ลำ และเรือ ท่องเที่ยว 4 ลำ โดยมีเส้นทางการให้บริการตั้งแต่ท่าเรือพระนั่งเกล้า ถึงท่าเรือสาทร นอกจากนี้บริษัทยังร่วมมือกับกรมเจ้าท่าในการพัฒนา ท่าเทียบเรือสาธารณะต่างๆ เช่น ท่าเรือสะพานพุทธ และท่าเรือ พระปิ่นเกล้า เพื่ออำนวยความสะดวกแก่ประชาชนและนักท่องเที่ยวใน การคมนาคมทางน้ำ โดยเน้นการเชื่อมต่อกับระบบขนส่งสาธารณะอื่น (เรือ-รถ-ราง) อย่างเร้รอยต่อ (Seamless Transportation) และส่ง เสริมนโยบายสังคมไร้เงินสด (Cashless Society) อย่างมีประสิทธิภาพ

รถโดยสารพลังงานไฟฟ้า "MINE BUS" เป็นรถชานต่ำ รองรับผู้พิการที่ใช้รถวีลแชร์ เด็กและผู้สูงอายุขึ้น-ลงง่าย ภายในรถไม่มี สเต็ปทางเดินของช่วงห้องโดยสารที่สูงแบบรถประเภทอื่น มีห้อง โดยสารกว้างขวาง ระยะห่างระหว่างเบาะกว้าง ไม่อึดอัด มีช่องเสียบ USB ให้บริการระหว่างการเดินทาง มีสมรรถนะการขับเคลื่อนอย่างมี ประสิทธิภาพ โดยปราศจากการสันดาปภายในที่ก่อให้เกิดมลพิษใน อากาศ สามารถวิ่งได้อย่างต่อเนื่อง ในทุกสภาพถนน ทุกสภาพการ จราจร และทุกสภาพอากาศ มีความน่าเชื่อถือและไว้วางใจได้ไม่น้อย กว่ารถโดยสารเครื่องยนต์สันดาป สามารถวิ่งได้ระยะทางสูงสุดประมาณ 300 กิโลเมตร ช่วยยกระดับการเดินทางบนท้องถนนที่เป็นมิตรต่อ สิ่งแวดล้อมอย่างยั่งยืน

\square弓

ส่งเสริมการดำเนินกิจกรรมอนุรักษ์พลังงานอย่างเป็นระบบ สนับสนุนสิทธิประโยชน์อย่างรอบด้าน เพื่อการประหยัดพลังงานอย่าง เป็นรูปธรรม" ถือเป็นหลักการส่งเสริมและสนับสนุนให้เกิดการประหยัด พลังงานด้วยกลไก Energy Points ให้กับโรงงานอุตสาหกรรมขนาดกลาง และขนาดย่อม (SMES) เนื่องจาก SMES ถือเป็นภาคส่วนที่มีข้อจำกัดด้าน ทรัพยากรในการดำเนินกิจกรรมอนุรักษ์พลังงานที่ต้องการความช่วยเหลือ และส่งเสริมอย่างต่อเนื่อง ซึ่งที่ผ่านมาการประยุกต์ใช้กลไก Energy Points ดังกล่าวสามารถส่งเสริมให้ SMES จำนวนกว่า 1,310 แห่ง ดำเนินการ อนุรักษ์พลังงานได้อย่างมีระบบ ลดต้นทุนด้านพลังงานทั้งจากมาตรการที่ ไม่ต้องลงทุนหรือลงทุนต่ำจากคำแนะนำของผู้เชี่ยวชาญ และการลดต้นทุน ด้วยการปรับเปลี่ยนอุปกรณ์ประหยัดพลังงานจากเงินสนับสนุน 30% ส่ง ผลให้เกิดการประหยัดพลังงานได้รวมกว่า 14.1515 ktoe และประหยัด ต้นทุนพลังงานรวมได้ประมาณ 250 ล้านบาท

จากผลสำเร็จดังกล่าว SMEs ยังคงแสดงความสนใจ และต้องการให้ดำเนินโครงการ Energy Points อย่างต่อเนื่อง สถาบันพลังงาน เพื่ออุตสาหกรรม สภาอุตสาหกรรมแห่งประเทศไทย จึงเสนอขอรับการสนับสนุน "โครงการสนับสนุนการอนุรักษ์พลังงานและลดต้นทุนใน อุตสาหกรรมขนาด SME" หรือ Energy Points ระยะที่ 3 ซึ่ง กองทุนเพื่อส่งเสริมการอนรักษ์พลังงาน กระทรวงพลังงาน ได้เล็งเห็นถึงความสำคัญ ของการอนุรักษ์พลังงานในภาคอุตสาหกรรมอย่างต่อเนื่องโดยเฉพาะ SMES จึงให้ความกรุณาอนุมัติสนับสนุนให้ดำเนินโครงการดังกล่าว เพื่อร่วมกัน ลดต้นทุนพลังงาน และเสริมสร้างความสามารถในการแข่งขันให้กับภาคอุตสาหกรรมไทย

Energy Points คืออะไธ และกีปงะโยชช้อย่างไร

ENERGY POINTS

กลไกการอนุรักษ์พลังงานด้วย Energy Points คือ กลไกส่งเสริมและจูงใจให้ SMEs อนุรักษ์พลังงานอย่างเป็นระบบด้วยหลักการ "สะสม 4 แลก 4 " กล่าวคือส่งเสริมให้ SMEs ดำเนินกิจกรรมอนุรักษ์พลังงานอย่างง่าย ดำเนินการไไดไม่ยาก พร้อมมีตัวอย่างให้ดำเนินการตามได้ ร่วมกับคำแนะนำจากผู้เชี่ยวชาญ 4 ขั้นตอน เพื่อแลกรับสิทธิประโยชน์ด้านพลังงาน 4 อย่าง โดยมีรายละเอียดเบื้องต้นดังนี้

ขั้นตอนที่ 1 การประกาศนโยบายด้านพลังงาน (Policy) แลกรับการ ฝึกอบรมแนวทางการอนุรักษ์พลังงานในระบบต่างๆ ที่แต่ละพื้นที่มี ปัญหา

ขั้นตอนที่ 2 การแต่งตั้งผู้ประสานงานด้านพลังงาน (Energy Man) แลกรับการเข้าเยี่ยมชมตัวอย่างการอนุรักษ์พลังงานดีเด่นในแต่ละ กลุ่มจังหวัด
ขั้นตอนที่ 3 กำหนดแผนงานมาตรการอนุรักษ์พลังงาน (Planning) แลก รับผู้เซื่ยวชาญเข้าให้คำปรีกษา 1 ครั้ง เพื่อแนะนำมาตรการประหขัด พลังงาน และคำแนะนำการดำเนินกิจกรรมการอนุรักษ์พลังงาน อย่างเป็นระบบ
ขั้นตอนที่ 4 ทบทวนแผนอนุรักษ์พลังงานเพื่อนำไปปฏิััติงาน (Review Plan) แลกรับเงินทุนสนับสนุนร้อยละ 30 ของเงินลงทุนจริง แต่ไม่เกิน 300,000 บาทต่อนิติบุคคล เพื่อดำเนินการลงทุนปรับปรุง และ/หรือ ปรับเปลี่ยนเครื่องจักรอุปกรณ์ให้เกิดการประหขัด พลังงาน พร้อมได้รับคำแนะนำจากผู้เซี่ยวชาญอีก 1 ครั้ง เพื่อ ทบทวนแผนงานการอนุรักษ์พลังงานที่จะดำเนินการต่อไปในอนาคต

โดยโครงการ Energy Points เป็นการดำเนินงานให้กับภาค อุตสาหกรรม SMES ทั่วประเทศ โดยมีศูนย์กลางการประสานงานของ โครงการแต่ละภูมิภาคผ่าน 18 กลุ่มจังหวัด และสภาอุตสาหกรรมจังหวัด ต่างๆ ทั่วประเทศทั้งนี้หากผู้ประกอบการสนใจสอบถามรายละเอียดเพิ่ม เติมหรือสมัครเข้าร่วมโครงการๆ สามารถติดต่อสอบถามเบื้องต้นได้ที่

สอบถาบรายละเอียดเพี่บเกิบหรือสบัดรไก้กั่
(7) Energy Points

C Tel: O2 3451249
Email: energypoints@ftior.th
(1) Website: www.iie.fti.or.th

ได้รับการรับรจงเป็นบริษันจัดการพลังงาน

(ENERGY SERVICE COMPANY หรือ ESCO)

โดยสถาบันพลังงานเพื่ออุตสาหกรรม สภาอุตสาหกรรมแห่งประเทศไทย

Panasonic

BUSINESS

เพื่อช่วยสถานประกอบการลดค่าใช้จ่ายจากการใช้พลังงาน
ส่งเสริมการลงทุน พัฒนาและประชาสัมพันธ์การอนุรักษ์พลังงานโดยใช้ระบบ Esco

(4) www.sanyosmi.co.th

®info@sanyosmi.com
U www.sanyoshop.com

WHAUP SOLAR ROOFTOP

No. 1 in solar power for industrial users
with experience providing high quality solar systems for over 50 factories

Contact WHA Utilities and Power Public Company Limited

Unควาแพิเศษ

บnบากของบล็อกเชน (Blockchain) ภายlus:uu Energy Trading

 ของเกคโนโลยีในถ้านการเงินการsนาคารจน ค̄ดว่าเป็นเรื่องเฉพาะอุตสาหกรsแ การเงิuการ suาคารทั้งหแด แธ่จริงฯแลัวบล็อกเชน สาแารถนำแาใช้กับหลายอุตสาหกรsu ไย่เวัน แย้แต่พลังงาน แต่บล็อกเชนกี่นำแาใช้งานคือBlockchain 2.0 ในส่วนของ Smart contract ไม่ใช่ Blockchain 1.0 ที่เราคุ้นเคยกัน ดังนั้นเราจะต้องทำความรู้จักกับ Smart contract ก่อน เพื่อให้เข้าใจว่าสามารถใช้กับอุตสาหกรรมอื่นได้อย่างไร

Blockchain 1.0 คือการเก็บข้อมูล ที่ใช้กับการเก็บรักษาเงินคริปโต แต่ Blockchain 2.0 คือการทำให้บส็อกเชนนำมาใช้งานได้มาก ขึ้นซึ่ง 1 ในนั้นคือ เรื่อง Smart contract

วะโิคืือ Smart contract แUUเข้าใจง่ายฯ

มีกรรมการติดสิน 5 คน ทุกครั้งกรรมการทุกคนต้อง
ระบุใครออกอะไร? และใครแพ้หรือชนะ?

ยึดตามเสียงข้างมากที่เห็นตรงกัน และกรรมการลงบันทึกใคร แพ้หรือชนะเหมือนกัน

เมื่อครบ 700 ครั้ง กรรมการทุกคน นำผลรวมคะแนนมายืนยันและ ถือว่าเป็นผลเอกฉันท์เป็นทางการ

สมมติว่ามีเกมเป่ายิ้งจุบ มีกรรมการ 1 คน กรรมการได้รับกติกาเป่า ยิ้งฉุบมาตรฐานมา ค้อนชนะกรรไกร กรรไกรชนะกระดาษ กระดาษชนะค้อน

มีผู้เล่นชื่อ A กับ B มาแข่งกัน แต่ละครั้งกรรมการก็จดไว้ว่าแพ้ชนะ หรือเสมอ สมมุติว่าเส่นกัน 700 ครั้ง A จำได้ว่า A ชนะไป 250 ครั้ง เสมอ 300

แต่ถ้าหาก B ก็บอกว่า B ต่างหากที่ชนะ 250 ครั้ง กรรมการเองก็มี การจดผิดไม่ตรงกับทั้งที่ A และ B บอก เราจะรู้ได้ยังไงว่าใครแน่ที่ชนะ ใครที่ เป็นคนจดผิดหรือจำผิด เราจะใช้อะไรตัดสินเรื่องนี้ได้

ดังนั้นถ้ามีการจัดตั้งกรรมการมา 5 คน ทุกครั้งที่ A กับ B เป่ายิ้งฉุบ กรรมการทุกคนต้องบอกกันว่า A ออกอะไร B ออกอะไร แล้วใครแพ้หรือชนะ
 ถ้าเสียงข้างมากเห็นตรงกัน ทุกคนก็จะต้องจดลงไปในสมุดบันทึกของตัวเองให้เหมือนกันหมด ว่าใครออกอะไรแล้วใครแพ้ชนะ พอครบ 700 ครั้ง กรรมการทุกคนก็เอาผลรวมคะแนนมายืนยันให้ดูกัน ถ้าส่วนใหญ่ได้ตรงกันนั่นก็คือผลอย่างเป็นทางการ

เมื่อนำมาทำความเข้าใจกับบล็อกเซน กติกาการเป่ายิ้งฉุบก็คือ Smart contract ที่ทำมาสำหรับการเป่ายิ้งฉุบโดยเฉพาะ input คือการ ออกค้อนกรรไกรกระดาษของ A และ B output คือแพ้ชนะหรือเสมอ กรรมการแต่ละคนก็คือ Node ในบล็อกเชน เวลากรรมการจะมาตัดสินใจ ร่วมกันว่าจะบันทึกลงไปในสมุดของตัวเองหรือไม่ นั่นเรียกว่า consensus ทุกครั้งที่มีการบันทึกลงไปในสมุด ถ้ามันไม่มีทางลบได้ หรือไปแก้ทีหลัง ได้ ระบบก็ปลอดภัยมากขึ้น ซึ่งเป็นจุดเด่นของบล็อกเชน

ดังนั้นบทบาทของ Smart contract ในบส็อกเชน ภายใต้อุตสาหกรรมพลังงานนั้นสามารถทำใด้ในระบบ Energy Trading เพราะใน อนาคตจะมีปรับเปลี่ยนโครงสร้างอุตสาหกรรมไฟฟ้าแบบดั้งเดิม สู่โครงสร้างอุตสาหกรรมไฟฟ้าในรูปแบบใหม่

กติกาการเป่ายัขจุบ
คือ Smart Contract ที่สร้างขึ้นมาสำหรับการเป่ายิ้งฉุบโดยเฉพาะ

โครงสร้างอุตสาหกรรมไฟฟ้าแบบดั้งเดิมนั้น ทิศทางการไหลของ ไฟฟ้าในระบบโครงข่ายไฟฟ้าเดิมเริ่มจาก การผลิตไฟฟ้าจากแหล่งพลังงาน ที่มาจากทั้งถ่านหิน เชื้อเพลิง พลังงานลม พลังงานแสงอาทิตย์ ๆลๆ จาก นั้นพลังงานไฟฟ้าจะถูกส่งผ่านระบบส่งไฟฟ้ากำลัง (Transmission System) โดยส่งไฟฟ้าแรงดันสูงเพื่อไปยังระบบจำหน่ายไฟฟ้า (Distribution System) ผู้ค้าปลีกไฟฟ้า และสุดท้ายจะถูกส่งไปยังลูกค้า อุตสาหกรรม ลูกค้าธุรกิจ และลูกค้าครัวเรือน

สำหรับโครงสร้างอุตสาหกรรมไฟฟ้ารูปแบบใหม่ เนื่องจากแหล่ง พลังงานที่มีราคาถูกลงเกิดขึ้น เช่น ต้นทุนการติดตั้งระบบผลิตไฟฟ้าจาก พลังงานแสงอาทิตย์มีราคาถูกลง แบตเตอร์รี่ และเซลล์เซื้อเพลิงที่มีราคา ถูกลง ทำให้ลูกค้าอุตสาหกรรม ลุกค้าธุรกิจ และลูกค้าครัวเรือนมีความ สามารถในการผลิตไฟฟ้า และกักเก็บพลังงานไฟฟ้าด้วยตนเอง หรือที่เรียก ว่า Prosumer

ดังนั้นพลังงานที่เหลือจากการใช้งาน ทำให้เกิดธุรกิจแพลตฟอร์ม เพื่อให้ลูกค้าสามารถขายไฟฟ้าที่เหลือใช้ให้กับผู้ใช้ไฟฟ้าอื่นได้ ซึ่งสามารถ ขายได้ทั้งภายในไมโครกริด และระหว่างไมโครกริดหรือผู้ค้าพลังงานหาก พลังงานภายในไมโครกริดเหลือใช้ โดยมีผู้ควบคุมไมโครกริด (Microgrid Operator) ในการทำหน้าที่จัดการและบริหารการซื้อขายไฟฟ้าระหว่าง ไมโครกริด

ในจุดนี้เองที่บล็อกเชนจะเข้ามามีบทบาทที่สำคัญเพื่อเก็บ สัญญาการซื้อขายไฟแต่ละช่วงเวลาที่ต้องส่งพลังงาน รวมทั้งข้อ กำหนดร่วมกัน รวมทั้งข้อกำหนดร่วมกัน เช่นเป็นต้นว่า ถ้าไม่ สามารถส่งไฟได้ตามกำหนดจะมีค่าปรับเท่าไหร่ ถ้าให้คนขายและ ซื้อไฟ ฝากเงินไว้ในระบบก่อนบางส่วน ก็สามารถจะตัดเงินออกจาก บัญชีได้อัตโนมัติ ไม่ต้องกังวลว่าจะไม่มีเงินจ่ายค่าไฟหรือค่าปรับ

การออกคาร์บอนเครดิต หรือ Renewable Energy Credit (REC) ก็เริ่มเกิดขึ้นทั่วๆไป $R E C$ และคาร์บอนเครดิตสามารถ ซื้อขายได้ $R E C$ นั้นสามารถเปลี่ยนเป็น Carbon credit ได้ แต่ถ้า เปลี่ยนแล้ว ไม่สามารถขาย REC ได้ พูดง่ายๆ คือ ห้ามขายพร้อม กันทั้งสองอย่างหรือที่เรียกว่า double count เป็นการป้องกันการ ขายซ้ำวิธีหนึ่งที่ป้องกันได้คือ ทุกครั้งที่ออก REC สามารถเอาเลข มิเตอร์มาผูกไว้บน Smart contract แล้วถ้ามีการ convert ให้เป็น คาร์บอนเครดิต ตัว Smart contract ก็จะบันทึกไว้ว่า REC นี้ได้ ถูกนับไปแล้ว ใช้ต่อไม่ได้ระบบซื้อขายที่เข้าใจ Smart contract ก็ จะไม่ยอมให้มีการ ซื้อขาย $R E C$ ที่โดน convert แล้วกลับมานับซ้ำ เพื่อนำไปใช้ในจุดประสงค์อื่นอีก ดังนั้น Smart contract จะช่วย ให้ทุกฝ่ายมั่นใจในกติกานี้แม้จะไม่เห็นคาร์บอนเครดิตหรือ REC ด้วยตาเปล่าได้ก็ตาม

ในอนาคตรูปแบบโครงสร้างธุรกิจ โครงสร้างอุตสาหกรรม จะถูกปฎิวิติ โดยตัวกลางต่างๆจะถูกลดบทบาทลง ผู้ขายและผู้ซื้อ สามารถติดต่อกันตรง โดยผ่านเทคโนโลยีบล็อกเชน ซึ่งจะช่วยให้ ทุกธุรกรรมที่สื่อสารกันนั้นเชื่อถือได้ รวดเร็ว โปร่งใสโดยไม่ต้องผ่าน คนกลางเทคโนโลยีบล็อกเชนนั้นเข้ามาเพื่อช่วยให้สิ่งที่เคยเป็นไป ไม่ได้อย่างการเทรดพลังงานนั้นเกิดขึ้นได้ในวันนี้ เพียงแค่เราเข้าใจ ถึงคุณสมบัติและการใช้งานก็จะสามารถนำไปต่อยอด และพัฒนา ในอุตสาหกรรมอื่นในอนาคตต่อไปได้

 Cooling Tower Tãaध

Condenser Approach Temperature During Chemical \& Ozone Treatment

cher

 THAI ENERGY CONSERVATION CO.LTD.
 Ins 02809 1601-4 ॥Wกช 028091605 E-mail: sales@econowatt.co.th

bang bave broup

แริษัก บางจาก กอร์ปอเรชั่น จำกัก（แหาชน）กลุ่บธุรก๊จพลังงานโกยชั้นแแวหน้า พธ้อแนุ่วสร้างควาแบั่นควถ้านพลังงานให้กับปประเกศ

 ให้อีกวาบหลากหลายและสแถุล โกยนุ่งเบ้นการใช้นวัตกรsนสีเขียว จบก้าวสู่การเป็บสู่นำถ้านการเปลี่ยนผ่านถ้านพลังวาน กี่บีการถำเนินงานอยู่ใ่ในuานาประเทศกั่วโลก

กลุ่แบางจากฯ บุ่งบั่นกำเนินธุรกิวตาบแแวค̄ก การถำเนิuธุรกิวอย่างย่๋ยียน（Environmental， Social，Governance：ESG］และยีกการกำเūusุรก̄ว กายใ（ึ BCG Economy Model（Bio，Circular， Green Economy）เพื่อสร้างบูลค่า คุณค่า และ

www．bangchak．co．th

ค่าสัมประสิทธิ์สมรรถนะพลังงาน (Coefficient of Performance: COP) ควรมากกว่า 3 คำแนะำความถี่ในการตรวจวัด : ทุก 12 เดือน ข้อเสนอแนะเมื่อไม่ได้ตามเกณฑ์ที่แนะนำ :

1. ตรวจสอบปริมาณสารทำความเย็นว่าต่ำกว่าระดับที่กำหนดหรือไม่
2. ตรวจสอบความสะอาดของเครื่องระเหย (Evaporator)
3. ตรวจสอบความสะอาดของคอนเดนเซอร์ (Condenser)
4. ตรวจสอบความเร็วพัดลมของเครื่องระเหย (Evaporator)
5. พิจารณาเปลี่ยนปั๊มความร้อนที่มีประสิทธิภาพสูงขึ้น

ปัจจัยปัอกี่ 2

กระบวนการที่ใช้ความร้อน และอุณหภูมิทำงานไม่เกิน $60^{\circ} \mathrm{C}$
ไม่ควรใช้ยีตเตอร์ไฟฟ้าในการทำความร้อนควรใใช้ปั๊มความร้อนแทน
คำแนะนำความถี่ในการตรวจวัด : ทุก 12 เดือน
ข้อเสนอแนะเมื่อไม่ได้ตามเกณฑ์ที่แนะนำ: เปลี่ยนฮีตเตอร์ไฟฟ้าเป็นปั๊มความร้อน

ปัจจัยปัอกี่ 3

อุณหภูมิของสารทำความเย็นด้านคอนเดนเซอร์
(Condenser) สูงกว่าน้ำร้อนที่ผลิต ไม่เกิน $3^{\circ} \mathrm{C}$
คำแนะนำความถี่ในการตรวจวัด : ทุก 6 เดือน
ข้อเสนอแนะเมื่อไมได้ตามเกณฑ์ที่แนะนำ :

1. ตรวจสอบความสะอาดของเครื่องระเหย (Evaporator)
2. ตรวจสอบความเร็วลมหรืออัตราการไหลของอากาศผ่านเครื่องระเหย (Evaporator)

ปัจจัยข้อกี่ 4

อุณหภูมิของสารทำความเย็นด้านคอนเดนเซอร์ (Condenser) สูงกว่าน้ำร้อนที่ผลิต ไม่เกิน $3^{\circ} \mathrm{C}$
คำแนะนำความถี่ในการตรวจวัด : ทุก 12 เดือน ข้อเสนอแนะเมื่อไม่ได้ตามเกณฑ์ที่แนะนำ :

1. ตรวจสอบความสะอาดของคอนเดนเซอร์
2. ตรวจสอบอัตราการไหลของน้ำร้อนที่ผลิต

ปัจจัยข้อกี่ 5

อุณหภูมิของสารทำความเย็นด้านเครื่องระเหย (Evaporator) ต่ำกว่าที่อากาศออกจากเครื่องระเหย (Evaporator) ไม่เกิน $5^{\circ} \mathrm{C}$ คำแนะนำความถี่ในการตรวจวัด : ทุก 3 เดือน ข้อเสนอแนะเมื่อไม่ได้ตามเกณฑ์ที่แนะนำ :

1. ตรวจสอบความสะอาดของเครื่องระเหย (Evaporator)
2. ตรวจสอบความเร็วลมหรืออัตราการไหลของอากาศ ผ่านเครื่องระเหย (Evaporator)

Tips\& กลเบ็ดเคล็กไม่ล้บสำHรัUS:Uบปี๊ปควาแร้อน

1. เติมสารทำความเย็นให้อยู่ในระดับปกติ โดยสังเกตจากไซท์ำลาส (Sight ģlass)
2. นำความเย็นที่ได้จากด้านเคื่องระเหย (Evaporator) ไปใช้ประโยชน์ให้ได้มากที่สุด ซึ่งจจช่วยประทยัดพลังานลดภาระการทำงานของระบบการปรับอากาศ ระบบทำความเย็นเดิมลงได้ส่วนหนึ่ง
3. ช่วงการใช้งน การจ่ายความร้อนควรอยู่ในอุณหภูมีไม่เกิน $60^{\circ} \mathrm{C}$ ซึ่งเป็นช่วงที๋ป๊มความร้อนมีประสิทธิภาพสูงที่สุด
4. กรถีมีความต้องการใช้ความร้อนไม่เกิน $60^{\circ} \mathrm{C}$ และจุดที่ต้องการความเย็นอยู่บริเฉณใกล้เคียง ควรพิจารณาเลือกใช้ั๊มความร้อน หรือหากจุดใช้านมีอุณหภูมิ สูงกว่า $60^{\circ} \mathrm{C}$ อาจพิจารณาใช้ป๊มความร้อนเป็นเครื่องหลักหรือเเรื่องฐานที่ใช้ในการทำความร้อน (Base Load) ร่วมกับอุปกรณ์ให้ความร้อนประเภทอื่น
5. ตำแหน่งติดตั้งั๊มความร้อนควรมีแหล่งที่ต้องการความร้อน (บริเวณรับความร้อน) ใกล้กับแหล่งจ่ายความร้อน (บริเวณที่ต้องการความเย็น) อยู่ใกล้เคียงกัน เพื่อ ใช้ประโยชน์ำกปั๊มความร้อนได้อย่างเต็มที่
6. ควรพิจารณาติดมิเตรร์จัดการใช้พลังานไฟฟ้าสำหรับปั๊มความร้อน
7. แหล่งจ่ายความร้อนควรพิจารณใให้เหมาะสมบริวณที่ติดตั้งปั๊มความร้อน เนื่องจากถ้าแหล่งจ่ายความร้อนมีอุณหภูมิสูจะทำให้ COP หรือค่าสัมประสิทธิ์ สมรรถนะ (Coeffcient of Performance) ซึ่งเป็นค่าที่บ่งขอกถึงประสิทธิภาพในการทำความร้อนของปั๊มความร้อนสูฮง้นด้วย
8. คอยล์เย็น คอนเดนซิ่ยูนิต ไม่มีเสียดังนิดปกติเมื่อปัมมความร้อนทำงาน
9. ในกรณีที่คอยล์เย็นสกปรก ให้ล้างด้วยน้ำสบู่และน้ำเปล่า ไม่จำเป็นต้องเป็นน้ำยา เพราะอาจทำให้อุปกรณ์เกิดการเสียหาย่ได้
10. ระมัตระวังไม่ให้แผ่นครีบระบายอากาศ เอน เอียง โก่งงอ เสียรูป ซึ่งจะมีผลทำให้อากาคไหลผ่านไม่สะดวก
11. ตัวกรองอากาศสามารถทำความสะอาดได้ด้วยสบู่และน้ำเปล่า ควรหลีกเเล่ยงการทำความสะอาดด้วย การฉีดน้ำแรงดันสูง ซื่งทำให้ใยกรองอากาศเสียหาย
12. ตัวกรองอากาศที่สกปรกจะมีผงసุ่นละอองอุตัน ซื่มีมลตต่อการไหลอากาศ อีกทั้งยังส่งผลส่วนประกอบอื่นๆ ภายในคครื่อง ทำให้มีอายุสั้นลงอีกด้วย
13. ท่อน้ำทิ้งควรมีการตรวจสอบอย่างสม่ำสมอ และทำความสะอาดในกรถีที่จำเป็น เพื่อลดการสะสมของสิ่งสกปรก
14. การออกแบบปั๊มความร้อนแบบแหล่งจ่ายความร้อนด้วยน้ำนั้น สามารถออกแบบให้วมมเป็นส่วนเดียวกันกับถังเก็บน้ำ หรืออาจจะออกแบบให้แยกกัน ทั้งนี้งั๊ม ความร้อนที่จัดเป็นชุดที่มีถันน้ำร้อนรวมเป็นส่วนเดียวกันกับตัวั๊มความร้อน เพื่อหมุนีียนน้ำระหว่างถังเก็บน้ำกับชุดั๊มความร้อน ทำให้ประหยัดการลททุนใน ด้านอุปกรณ์ ลดขนาดหื้นที่ติดตั้งลดลง แต่ถ้าแยกถังน้ำออกมาก็จะมีข้อดี ในกรณีที่ถังน้ำชำรดทำให้สามารถเปลี่ยนถังน้ำได้สะดวก
15. สำหรับปั๊มความร้อนที่ใช้น้ำเป็นตัวกลางในการแลกเปลื่ยนความร้อนนั้น ปกติแล้วเพื่อเป็นการยืดอายุัวอุปกรณ์และเปลี่ยนความร้อน โดยส่วนมากจะมีส่วน ประกอบของทองแดง

MEMBER OF
Dow Jones
Sustainability Indices
In collaboration with seserasumens

อึกหนึ่งปี

GC คsองอันดับ 1 DJSI ต่อนึ้อง 2 ปีชัอน

ดัชนีควาบยั่งยืน DJSI lu Chemicals Sector
s=ดิบโลก สะท้อuควาบุ่งแี่นшลักดัน
กางพัตแนาอย่างยั่งยีนตลอดโช่อุปทาน

แห่งควาแภูปีใจ เพื่อคuInย โดยคuITnย ย่งยียนในเจกีโลก

แาร่วบสบุกและะิ์บส่วนหนึ่ง
กับสกาบับพลังงาบเพื่ออุดสาผกรงเ
เพียงส่งฬ้วข้ออบSแ
ถ้านพลังงานกี่คุญสนใจ

ก่านละ 1 ฝ้วข้อนะคร๋บ

ลุ้นร้บของกี่ระลลึกอาก สถาบันพลังงานเพื่ออุดสาหกรsบ จำนวน 5 รางว้ล

Hมดเuดs่วบสบุกภายในวันกี่ 29 qุaาคu 2564
Usะกาศรายชื่อผู่โชคล̆ ภายใน วันที่ 12 พกศธิกายน 2564
nาv Website : www.iie.fti.or.th
Facebook Fanpage : fb.me/iie1999.fti
Line ID: @vfg3606e
เงื่วนโัยและกส̄กา

2. คำตัตสินยองสถาบันพลังอานฯถือเป็นเก็ดยาดและสี้นสุด

Energy GAME สแกบเพื่วส่งคำตวบ

ปกิณกะ

ผ้วข้อ＊
วันกี่จัด

1．กางสร้างจิตสำนึกพื้บฐาบล้านการอบุรักษ์พลังงาบ	¢ุลาคบ 2564
2．การธธรจสอบและวิเคราะト์กางใช้พลังงานควาบร้อน	พฤศจักายน 2564

＊อาจแึการเปลี่ยบแแลลงฑัวย้อตาบควายเนแาะสแ

วัตราโコษญา Banner บนาด 250×160 Pixel ส้านหน้าเร็บโซต์
$s=ย=เ ว ล า ~ S า ค า ส \nu า ช ิ ก ~ S า ค า ก ั ่ ว ไ บ ~$
12 เถือน 25，000 บาก 32,000 บาก
ขนาด 365×225 Pixel ब้านหไ้าเร็บไซต่
12 เถือน 45，000 บาก 52，000 บาก

สำHรับสแาชัก
ลแาชิกท่านใกสนใจลงโขษณาบนเบ็บโชต์สถาบับบ www．iie．fti．or．th สายารถตักc่อกลัยยายัง

Insศัพท์ 0－2345－1246 อีเบลล์ ：aekapholh＠fti．or．th เราบัอักราพิเศษสำหรับสแาชิก Energy Focus

อ๋๓งาโขแณาวารสาง Energy focus ／e－Energy Focus ที่ส่งตรงถึงปีอสบาชิก ผู้ปs：กวบกาง ส．ว．ก．ทั่วUsะ！nศ

Sายละโ゙ยด	ราคาพ̄เศษ ลง 4 घบ้บ	Sาคาแย ราคาสแาชัก a．o．n．faự	บกลบับ ราคาบุคล กั่วบยวดบับ
1．Uกหบ้าถ้าuไu（Inside Front Cover）	$22,000 \times 4=88,000$	24，000	26，000
2．ไuเล่แเต็แหน้า（Page 4－34）	$14,000 \times 4=56,000$	16，000	15，000
3．โนเล่บเก็บหบ้าคู่ （หน้าโขษณาพร้อบบกควาแ）	$20,000 \times 4=80,000$	22，000	24，000
4．ปกหลังถ้าu？（Inside Back Cover）	$22,000 \times 4=88,000$	24，000	26，000
5．Unหลังถ้า ${ }^{\text {a }}$（Inside Back Cover）	$30,000 \times 4=120,000$	32，000	37，000

สนใจลงโขษณาในวารสาร สายารถสอบถาบรายละเอียกเพี่ยเติบไถ้กี่

"wลังงาuus̄ąกธ์ wลังเพื่ออนาคต"

 และS:Uบกักเก็บพลัטทาน (ESS)

EnergyAbsolute

\# EnergyAbsolute.co.th

E
Energy Absolute

Us̄t̄n wล̄จทาuUs̄ąnร์ จำกัด (JKาชU) Energy Absolute Public Company Limited

ชั้ 16 อาคารเอไอเอ แคปปฟตอล เช็นเตอร์
 [nsสาs 02248 2488-92, 02002 3667-9 Insสาs 022482493

